
A Fast Post-Training Pruning Framework for
Transformers

Woosuk Kwon⇤

UC Berkeley
woosuk.kwon@berkeley.edu

Sehoon Kim⇤

UC Berkeley
sehoonkim@berkeley.edu

Michael W. Mahoney
UC Berkeley, ICSI, & LBNL
mahoneymw@berkeley.edu

Joseph Hassoun
Samsung Semiconductor, Inc.
j.hassoun@samsung.com

Kurt Keutzer
UC Berkeley

keutzer@berkeley.edu

Amir Gholami
UC Berkeley

amirgh@berkeley.edu

Abstract

Pruning is an effective way to reduce the huge inference cost of Transformer models.
However, prior work on pruning Transformers requires retraining the models. This
can add high training cost and high complexity to model deployment, making it
difficult to use in many practical situations. To address this, we propose a fast post-
training pruning framework for Transformers that does not require any retraining.
Given a resource constraint and a sample dataset, our framework automatically
prunes the Transformer model using structured sparsity methods. To retain high
accuracy without retraining, we introduce three novel techniques: (i) a lightweight
mask search algorithm that finds which heads and filters to prune based on the
Fisher information; (ii) mask rearrangement that complements the search algorithm;
and (iii) mask tuning that reconstructs the output activations for each layer. We
apply our method to BERTBASE and DistilBERT, and we evaluate its effectiveness
on GLUE and SQuAD benchmarks. Our framework achieves up to 2.0⇥ reduction
in FLOPs and 1.56⇥ speedup in inference latency, while maintaining < 1% loss in
accuracy. Importantly, our framework prunes Transformers in less than 3 minutes
on a single GPU, which is over two orders of magnitude faster than existing pruning
approaches that retrain the models.1

1 Introduction

In recent years, Transformer [76] has become a de facto standard model architecture in Natural
Language Processing [4, 12, 46], and it is becoming common in many domains including Computer
Vision [14, 48, 75] and Speech Recognition [2, 7, 26]. However, efficient deployment of Transformer
architectures has been challenging due to their large model size and high inference latency. As a
promising way to tackle this challenge, structured pruning of Transformers has been widely studied.

While prior work on pruning Transformers substantially reduces the inference time, it is often difficult
to use in practice for several reasons. First, previous approaches require retraining the pruned model
and/or jointly learning the pruning configurations during training. This increases the training time by
up to 10⇥ [38, 88], adding significant computational overhead. Second, previous methods add many
moving parts to the model deployment process. That is, the pruning pipelines are often complex and
require additional hyperparameter tuning. Such techniques demand significant engineering efforts
for implementation and debugging, which impedes their adoption in production pipelines. Third,

⇤Equal contribution.
1Our code is publicly available at https://github.com/WoosukKwon/retraining-free-pruning

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/WoosukKwon/retraining-free-pruning

(a) Existing Pruning Frameworks

User
Intervention

Entire
Dataset

Fine-tuned
Transformer

Retraining ~30 hrs

(b) Our Pruning Framework

Sample
Dataset

Fine-tuned
Transformer

No Retraining ~3 mins

FLOPs/latency
Constraints

Figure 1: (a) Prior pruning frameworks require additional training on the entire training set and
involve user intervention for hyperparameter tuning. This complicates the pruning process and
requires a large amount of time (e.g., ⇠30 hours). (b) Our pruning framework does not require
retraining. It outputs pruned Transformer models satisfying the FLOPs/latency constraints within
considerably less time (e.g., ⇠3 minutes), without user intervention.

these previous methods do not directly adapt to the users’ constraints. They either rely on vague
regularization hyperparameters to control the model sparsity or use fixed model architectures selected
independently of the user settings. This can result in sub-optimally pruned models that are not tailored
to the users’ constraints and hardware.

To address the above limitations, we propose a fast post-training pruning framework for Transformers
that does not require any retraining of the models. As illustrated in Figure 1, our framework takes
as input a Transformer model, a sample dataset, and a FLOPs/latency constraint. It then outputs a
pruned Transformer model that can be deployed immediately. By avoiding expensive retraining, the
end-to-end pruning pipeline can be extremely fast and simplified, which typically takes a few minutes
without any user interventions that complicate the whole process.

Indeed, post-training compression has been widely studied for quantization, and it gained considerable
attention in both academia and industry [3, 27, 97]. Although quantization-aware training methods
achieve higher compression rates in general, post-training quantization (PTQ) has often been more
preferred in practice due to its retraining-free advantages. Importantly, PTQ allows quantization to
happen seamlessly at the model deployment time using the tools such as TensorRT [56], TFLite [19],
and OpenVINO [29]. Similar to the PTQ methods, our framework provides an out-of-the-box tool
that enables pruning of Transformers without engineering efforts.

Our contributions can be summarized as follow:
• We propose a novel post-training pruning framework for Transformers that does not require model

retraining. To retain accuracy without retraining, our framework consists of three stages: (i) the
mask search process guided by the Fisher information matrix to select which heads/filters to prune
(Section 4.1); (ii) the mask rearrangement process that reselects the heads/filters to prune by
capturing intra-layer interactions (Section 4.2); and (iii) the mask tuning process that adjusts the
mask variables to ensure that the output signal is recovered for each layer (Section 4.3).

• We extensively test our framework by applying it to BERTBASE and DistilBERT on GLUE and
SQuAD tasks (Section 5.2). Within 1% of accuracy drop, our framework reduces 30–50% of the
original FLOPs (Figure 5), resulting in up to 1.56⇥ speedup on an NVIDIA V100 GPU (Table 1).

• We show that our method achieves comparable or even better FLOPs-accuracy trade-off than prior
structured pruning methods without retraining (Section 5.3, Figure 6). Our end-to-end pruning
pipeline finishes in only 39 and 135 seconds on average for GLUE and SQuAD (Section 5.4,
Table 5), which is over 100⇥ faster than the retraining-based methods.

2 Related Work
Efficient Transformers. In order to improve the inference speed and reduce the memory footprint of
Transformers, multiple different approaches have been proposed. These can be broadly categorized
as follows: (i) efficient architecture design [28, 35, 39, 72, 81, 87]; (ii) hardware-software co-
design [21, 22, 73, 80]; (iii) knowledge distillation [31, 63, 71, 82]; (iv) quantization [33, 66, 95, 96];
(v) neural architecture search [6, 67, 68, 79, 90, 93]; and (vi) pruning. In this paper, we focus on
pruning and briefly discuss the related works.

2

Transformers Pruning. Pruning has been a promising way to remove unimportant weights in
neural networks. Pruning can be largely categorized into unstructured and structured pruning. For
unstructured pruning, magnitude-based [18], first-order [64], and second-order [36] pruning methods,
and the lottery ticket hypothesis [9, 10, 16, 58] have been explored for Transformers. While these
methods can substantially compress the model size, commodity hardware such as GPUs can hardly
take advantage of the unstructured sparse patterns for model inference speedup.

For this reason, a number of structured pruning methods have been introduced to remove coarse-
grained sets of parameters in Transformers. For example, to prune structured sets of parameters in
weight matrices, low-rank factorization [83], block-wise sparsity [43], and tile-wise sparsity [20]
were studied. Furthermore, as more coarse-grained methods, attention head pruning [51, 77] and
layer dropping [15, 62] have been popularly used. Taking a step further, recent approaches [8, 32, 38,
44, 47, 88, 92] have explored jointly pruning Transformers with different pruning granularity and
principles, maximizing the model efficiency in every dimension. Orthogonally, another thread of
work [15, 25, 49, 89, 98] has shown that Transformers can be dynamically pruned at inference time.

Unfortunately, while the structured pruning methods can achieve high compression rates and speedups,
they are often difficult to use in practice. One reason for this is the high computational cost of
additional training during or after pruning, which can be up to 10⇥ [38, 88] compared to that of the
original model training. Another reason is the high complexity of the pruning pipelines [25, 38, 47,
92], where each pruning stage often requires rewriting the training code and introduces additional
hyperparameters to tune.

Post-training Model Compression. Post-training compression methods have been widely studied in
quantization. These methods, categorized as post-training quantization (PTQ), perform quantization
without any retraining, thereby avoiding the additional training cost and user intervention. Multi-
ple PTQ techniques have been proposed to effectively mitigate the accuracy degradation without
retraining [3, 27, 54, 97].

Although not as much as for quantization, post-training schemes have also been explored for unstruc-
tured [17, 40, 53] and structured pruning of CNNs. For structured pruning, [34, 70, 94] proposed
ways to group and merge similar neurons in a CNN. However, we find it difficult to extend those
techniques to pruning Transformers because they require the model to have a repeating structure of a
linear layer and an element-wise nonlinearity, which is not the case for the multi-head attention layers
of Transformers. Even for the feed-forward network layers of Transformers, [34, 70] can hardly be
used because they rely on a certain characteristic of ReLU while many Transformers [4, 12, 91] use
GELU [24] instead of ReLU.

Motivated by the fact that the existing post-training CNN pruning techniques cannot be applied
to Transformers, in this paper we propose a novel post-training pruning method with a focus on
Transformers. However, we would like to note that the underlying principles in our approach are
general enough to be extended to pruning other types of model architectures such as CNNs.

3 Overview
3.1 Background

Transformer Architecture. In this paper, we focus on the pruning of encoder-based Transformer [76]
models, especially the BERT [12] architecture family. BERT is a stack of homogeneous Transformer
encoder blocks, each of which consists of a multi-head attention (MHA) layer followed by a point-
wise Feed-Forward Network (FFN) layer. Specifically, an MHA layer consists of H independently
parameterized attention heads:

MHA(x) =
HX

i=1

Atti(x), xMHA = LayerNorm
�
x + MHA(x)

�
,

where Att is a dot product attention head, and x is the input sequence. The output of the MHA layer
is then fed into the FFN layer, which consists of N filters:

FFN(x) =
� NX

i=1

W(2)
:,i �(W

(1)
i,: x + b

(1)
i
)
�
+ b

(2)
, xout = LayerNorm

�
xMHA + FFN(xMHA)

�
,

where W(1)
,W(2)

, b
(1) and b

(2) are the FFN parameters, and � is the activation function, typically
GELU [24]. Note that (H , N) is (12, 3072) for BERTBASE, and (16, 4096) for BERTLARGE. We also
denote L as the number of Transformer layers (e.g., 12 for BERTBASE).

3

d

0
1
0

:1
+,-

0
1
0
1

:1
//0

(b) Mask Search (c) Mask Rearrangement

0
0
1

1
1
0
0

:1
+,- :1

//0

1
1
1

:1
+,-

1
1
1
1

:1
//0

(a) Initial Mask (d) Mask Tuning

0
0

0
0

:1
+,- :1

//0

1.1

1.2

0.9

Sum

×H

d

Attn W(!)

×N

NMHA Mul Mul

:1
+,-

W(')

d

x x$%& x(()

d

:1
//0

Figure 2: Overview of our pruning framework. (a) The mask variables are initialized as 1. Then they
undergo the three-stage pipeline of (b) mask search (Section 4.1), (c) rearrangement (Section 4.2),
and (d) tuning (Section 4.3).

Granularity of Pruning. Our framework considers the structured pruning of both heads in MHA and
filters in FFN layers. We do not prune the embedding and the final classifier, as computation of those
layers takes a negligible portion of the total inference latency. Since our pruning framework always
produces a smaller dense architecture, the model can be readily accelerated without the need of
specialized hardware logic, which is often required for unstructured sparsity to gain latency speedup.

Notations. We pose the pruning problem as finding a sparse mask for the heads and filters. To
formalize this, we introduce mask variables associated with the outputs of heads and filters:

MHA(x;mMHA
l

) =
HX

i=1

m
MHA
l,i

� Atti(x),

FFN(x;mFFN
l

) =
� NX

i=1

m
FFN
l,i

� W(2)
:,i �(W

(1)
i,: x + b

(1)
i
)
�
+ b

(2)
,

where mMHA
l

2 RH and mFFN
l

2 RN are the mask variables for MHA and FFN in the l-th layer,
respectively, and m

MHA
l,i

and m
FFN
l,i

are their i-th elements. Furthermore, � denotes the Hadamard
product. Originally, the mask variables are all initialized to 1, which does not change the model
outputs. After pruning, the mask variables become zero or any nonzero values, affecting the model
accuracy and sparsity. Especially, setting m

MHA
l,i

and m
MHA
l,i

as zero is equivalent to pruning the i-th
head and filter, respectively.

Overall, there are LH head mask variables and LN filter mask variables, summing up to L(H +N)
number of total mask variables in a Transformer model. To simplify notations, we additionally define
mMHA 2 RLH , mFFN 2 RLN , and m 2 RL(H+N) as flattened vectors of the head, filter, and total
mask variables, respectively, across all layers. In what follows, we discuss how to find the optimal
sparse masks under a given cost constraint and how to adjust their values to recover accuracy.

3.2 Framework Overview

Figure 1(b) and Figure 2 illustrate the overview of our framework.

Inputs. Our framework has 3 inputs: a Transformer model; a sample dataset; and a resource constraint.
The input Transformer model should contain weights fine-tuned for a downstream task. The sample
dataset is a small partition of the training dataset (typically 1–2K examples) for the downstream task.
The resource constraint can be given either as the number of floating point operations (FLOPs) or as
an actual latency on target hardware. In the later case, we further assume that a latency lookup table
for the target hardware is provided.

Compression Pipeline. As illustrated in Figure 2, our framework consists of 3 stages: Fisher-based
mask search; Fisher-based mask rearrangement; and mask tuning. During the Fisher-based mask
search stage (Section 4.1), we search for a binary mask applied to the heads and filters based on the
Fisher information of the mask variables. Intuitively, the mask variables with relatively higher Fisher
information are considered more important, and they should be less likely to be pruned [41, 45, 52].
As finding the optimal mask that minimizes the Fisher information loss is intractable due to the
large size of the full Fisher matrix, we propose a lightweight search algorithm that finds the optimal
mask under reasonable approximations. Second, in the Fisher-based mask rearrangement stage
(Section 4.2), the framework adjusts the searched mask patterns to better take into account the
intra-layer interactions between the mask variables. Lastly, in the mask tuning stage (Section 4.3),
the framework tunes the nonzero mask variables to recover the accuracy drop by reconstructing the
layer-wise output signal.

4

4 Methodology

The pruning problem can be seen as finding an optimal mask under a sparsity constraint. However,
without retraining, the problem becomes intractable. To address this, we decompose Transformer
pruning into three sub-problems, each of which can be efficiently solved; the first two stages of our
pipeline address the problems of finding an optimal binary mask, and the last stage further optimizes
it into a real-valued mask.

Note that the number of the mask variables is much less than the number of the parameters in a
Transformer (e.g., 37K vs. 110M in case of BERTBASE). This allows the framework to use only a small
number of examples without overfitting to the sample dataset, and thus to be extremely faster than
the retraining-based pruning methods which typically use the entire dataset. As the framework keeps
the model “as is” and only decides the mask variables, we henceforth regard the model parameters as
constants and consider the mask variables as the only parameters for our pruning problem.

Problem Formulation. We formulate Transformer pruning as a constrained optimization problem
on the mask m:

argmin
m

L(m) s.t. Cost(m) C (1)

where L denotes the loss function, Cost is the FLOPs/latency of the architecture pruned by the mask,
and C is the given FLOPs/latency constraint. Unfortunately, such a problem is generally intractable
as Cost is usually a function of l0-norm of the mask m, which is non-differentiable. Thus, in what
follows, we introduce several assumptions and approximations to simplify the problem.

We start by approximating the loss function using the second-order Taylor expansion around the
initial mask 1:

L(m) ⇡ L(1)� g|(1� m) +
1

2
(1� m)|H(1� m) (2)

⇡ L(1) + 1

2
(1� m)|H(1� m), (3)

where g = E[@

@mL(1)] and H = E[@
2

@m2L(1)]. Eq. 3 is deduced from an assumption that the model
has converged to a local minima, where the gradient term is close to 0 [41]. As L(1) is a constant, we
can rewrite the optimization objective as follows:

argmin
m

L(m) ⇡ argmin
m

(1� m)|H(1� m). (4)

Eq. 4 shows that the optimal mask is determined by the Hessian of the loss with respect to the mask
variables. Since forming the exact Hessian matrix explicitly is infeasible, we approximate the Hessian
H with the (empirical) Fisher information matrix I of the mask variables:

I :=
1

|D|
X

(x,y)2D

� @

@m
L(x, y; 1)

�� @

@m
L(x, y; 1)

�|
, (5)

where D is the sample dataset and (x, y) is a tuple of an input example and its label.

4.1 Fisher-based Mask Search

Diagonal Approximation of the Fisher Information Matrix. It is intractable to solve the opti-
mization objective in Eq. 4 using the full Fisher information matrix I. Thus, we first make a simple
assumption that I is diagonal. This further simplifies Eq. 4 as follows:

argmin
m

L(m) ⇡ argmin
m

X

i

(1�mi)
2Iii, (6)

Since we restrict the possible mask values to either 0 or 1, the following can be derived from Eq. 6:

argmin
m

L(m) ⇡ argmin
m

X

i2Z(m)

Iii where Z(m) := {i | mi = 0}. (7)

We can interpret each diagonal element of I as the importance score of the head/filter associated with
the mask variable, and Eq. 7 as a process of minimizing the total importance scores of the pruned
heads and filters. Such an importance score has also been introduced in [52, 74] to guide pruning.

5

Algorithm 1 Mask Search with a FLOPs Constraint
Input: FLOPs constraint C, diagonal Fisher information matrix I

1: for n = 0 to LH do . # remaining heads
2: k1 = LH � n . # heads to prune
3: HI = indicies of k1 least important heads
4: f = b(C � nFhead)/Ffilterc . # remaining filters
5: k2 = LN � f . # filters to prune
6: FI = indicies of k2 least important filters
7: S[n] =

P
i2HI[FI Iii

8: R[n] = (HI, FI)
9: end for

10: n
⇤ = argmin

n
S[n] . optimal # remaining heads

11: HI⇤, FI⇤ = R[n⇤] . indicies of heads/filters to prune
12: Initialize mMHA and mFFN as 1
13: mMHA[HI⇤] = 0 . prune the selected heads
14: mFFN[FI⇤] = 0 . prune the selected filters
Output: m⇤ = (mMHA, mFFN)

Solving FLOPs-constrained Problem. We need to solve Eq. 7 given a cost constraint. For a given
target FLOPs cost, denoted by C, we can formulate the binary mask search problem as follows:

argmin
m

X

i2Z(m)

Iii s.t. Fhead||mMHA||0 + Ffilter||mFFN||0 C, (8)

where Fhead 2 R and Ffilter 2 R are the FLOPs for computing a head and a filter, respectively. Note
that the number of FLOPs of a head/filter is constant across all layers. While such an optimization
problem can be generally solved by a knapsack algorithm [1, 65], the following observations allow a
faster polynomial-time solution: (1) having more heads and filters unpruned always optimizes Eq. 8
since the diagonal elements of I are non-negative; and (2) if a certain number of heads needs to be
pruned, they should be the ones with the lowest importance scores because each head accounts for
the same amount of FLOPs. The same statement also holds for pruning filters. The two observations
lead to our mask search algorithm described in Algorithm 1.

Algorithm 1 partitions the solution space by the total number of remaining heads in the pruned
architecture (n in line 1). For each n, the number of remaining filters should be the largest possible
number that satisfies the cost constraint by observation (1), which can be described as f in line 4.
Then by observation (2), the heads/filters with the lowest important scores are selected to be pruned.
Therefore, S[n] is a solution of Eq. 8 under additional constraint of fixing the number of remaining
heads to be n. When the loop terminates, the output is the mask that minimizes S[n] across all
possible n (line 10 and 11). In Section A.1, we prove that the output mask m⇤ of Algorithm 1 is
optimal. That is, any other mask m satisfying the given FLOPs constraint will result in a higher loss:

X

i2Z(m⇤)

Iii
X

i2Z(m)

Iii. (9)

Solving Latency-constrained Problem. If the cost constraint is given in terms of latency on target
hardware, we have a new optimization problem with a different cost constraint than Eq. 8:

argmin
m

X

i2Z(m)

I s.t.
LX

l=1

LAT(mMHA
l

) +
LX

l=1

LAT(mFFN
l

) C, (10)

where the function LAT indicates the latency of a MHA/FFN layer after pruning. We assume that a
latency lookup table on the target hardware is provided so that evaluating LAT takes negligible time.

Unfortunately, the latency constraint makes the problem more challenging as directly applying
Algorithm 1 is no longer possible. This is because LAT is not linear to the number of remaining heads
or filters after pruning [59], as shown in Figure 3 (Left). We can interpret this as follows: (1) with a
sufficient number of heads/filters in a layer, the hardware resources such as parallel cores can be fully
utilized, resulting in latency roughly proportional to the number of heads/filters; and (2) otherwise,
the hardware is underutilized and a constant overhead dominates the latency [37, 50]. Thus, pruning
more heads/filters below a certain threshold does not translate into actual speedup.

6

Heads/Filters

La
te

nc
y

T

=

Slop
e = A

Figure 3: (Left) Real latency of a single FFN layer with differ-
ent numbers of remaining filters. (Right) Schematic plot for
the approximated latency as a piece-wise linear function.

MHA1

FFN1

0

0
MHA2

N

N

H

H

L(H + N)

L(H + N)

Figure 4: Illustration of the block
diagonal Fisher matrix.

Based on the above analysis, we approximate LAT as a piece-wise linear function as in Figure 3
(Right) such that LAT(ml) is 0 if ||ml||0 = 0, c if 0 < ||ml||0 T , and a(||ml||0 � T) + c if
||ml||0 > T , where c 2 R is the constant overhead, T 2 N is the threshold number of heads/filters
that the latency starts to become linear, and a 2 R is the slope of the linear part. This can be easily
obtained by fitting the actual latency data in the lookup table with the minimum mean squared error.

The piece-wise linear approximation of LAT allows us to extend Algorithm 1 to the setting with
latency constraints. The core idea is to separately consider the constant part and the linear part of
LAT; after handling the constant part, we can apply the Algorithm 1 to the linear part. The detailed
modification to Algorithm 1 is described in Section A.2.

4.2 Fisher-based Mask Rearrangement

Block Diagonal Approximation of the Fisher Information Matrix. Although it simplifies the
problem, the diagonal assumption in Section 4.1 alone might not find the best solution, as it does
not take into account the interactions between different mask variables. For example, if there are
two attention heads playing a similar role in a layer, pruning only one of them might not affect the
model accuracy. However, when both of them are pruned, the model accuracy can be significantly
degraded. Such interactions are captured by the non-diagonal elements of the Fisher information
matrix, which were ignored in the previous stage. Thus, we can better consider the interactions in
our pruning problem by using a block diagonal approximation to the Fisher matrix, where a block
corresponds to a MHA layer or a FFN layer as illustrated in Figure 4.

However, the block diagonal approximation results in an intractable optimization problem over
the binary mask. To alleviate this, we use the results from the previous stage to warm start the
optimization problem. First, we constrain the number of heads/filters to prune for each layer to be the
same as the binary mask we obtained in the first stage. In other words, given the mask m⇤ obtained in
Section 4.1, we constrain ||ml||0 to be equal to ||m⇤

l
||0 for each layer l. Second, we use the mask m⇤

as the starting point of the greedy search to solve the new optimization problem.

Given the two assumptions that (i) there is no interaction between the mask variables in different
layers (i.e., the block diagonal approximation), and (ii) the number of heads/filters to prune are
pre-determined for each layer (i.e., warm-start), Eq. 4 breaks down to a set of layer-wise optimization
problems, as follows based on the derivation in Section A.3:

m̂l = argmin
ml

(1� ml)
|Il(1� ml), (11)

where Il is the l-th diagonal block of I . We approximately solve this problem with a greedy algorithm.
After initializing the mask ml as m⇤

l
(i.e., warm-start), we pick for every round a pruned head (or

filter) with the highest Fisher information and exchange it with an unpruned head (or filter) in the
current mask if that can further optimize Eq. 11. After every pruned head/filter goes through one
round, we obtain an approximate solution to Eq. 11.

Because this process does not change the number of heads/filters in each layer, the obtained mask
m̂l results in the same FLOPs/latency as that of the mask m⇤

l
searched in Section 4.1. In effect, this

process rearranges the binary mask variables of each layer to find a better arrangement of pruning
locations and capture the intra-layer interactions.

7

Figure 5: Accuracy of our pruning method applied to BERTBASE and DistilBERT with different
FLOPs constraints. The dashed horizontal lines indicate 1% accuracy drop from the baseline models.
Note that these results can be achieved in only 39 and 135 seconds for GLUE and SQuAD benchmarks,
respectively, on a single GPU system, as described in Table 5 (in Section A.10).
Table 1: Latency speedup of BERTBASE on a single NVIDIA V100 GPU with different batch sizes.
The latency is measured using PyTorch. We constrain the accuracy degradation to be at most 1%
from the baseline accuracy, and we report the largest speedup among those that satisfy the constraint.

Batch size MNLI QQP QNLI SST-2 STS-B MRPC SQuAD1.1 SQuAD2.0 Geo. mean

32 1.27⇥ 1.42⇥ 1.42⇥ 1.23⇥ 1.34⇥ 1.36⇥ 1.33⇥ 1.37⇥ 1.34⇥
256 1.34⇥ 1.54⇥ 1.53⇥ 1.56⇥ 1.54⇥ 1.55⇥ 1.34⇥ 1.40⇥ 1.47⇥

4.3 Mask Tuning

In the previous two stages, the possible mask values are restricted to either 0 or 1 in order to simplify
the search process. In this stage, we further relax this restriction. The nonzero variables in the mask
m̂ from Section 4.2 are tuned to any real values such that the pruned model recovers its accuracy.

Layer-wise Reconstruction via Linear Least Squares. We tune the mask variables toward min-
imizing the layer-wise reconstruction error, similarly to [23]. From the first to the last layer, we
reconstruct the output activation of the original model with the remaining heads/filters in the pruned
model. This can be formally written as follows:

argmin
ml

||x + layer(x;ml)�
�
x0 + layer(x0; 1)

�
||22, (12)

where layer is either MHA or FFN, and x and x0 are the inputs to the layer of the pruned model and
the original model, respectively. Here we compare the activations after the residual connection. Note
that this stage does not incur any change in model FLOPs/latency, as we only tune the nonzero mask
variables. We show in Section A.4 that Eq. 12 can be reduced to a linear least squares problem of
argminml

||Am
l
� b||22, where the matrix A denotes head/filter-wise output activations of the model

pruned by the binary mask and the vector b is the difference between the output activations of the
two models. Concretely, when there are T tokens in the sample dataset and D is the hidden size of
the model, the size of the matrix A is TD ⇥H for head masks and TD ⇥N for filter masks.

Due to the large size of the matrix A, naively solving the least squares problem can lead to numer-
ically unstable results. To address this, our framework uses the LSMR solver in CuPy [55] with a
regularization hyperparameter (i.e., damp). Concretely, we re-parameterize the least squares problem
as argminrl

||Ar
l
+A · 1� b||22 where ml = 1+ rl, and solve it with the damp value fixed to 1. Then,

to prevent the case in which the tuned mask rather hurts the accuracy, we restrict the acceptable
range of the tuned mask variables to [-10, 10]. When the solver finds a layer mask that exceeds this
range, we discard the mask for that layer and stop mask tuning. In our experiments, we find that the
aforementioned heuristics make the mask tuning process highly stable across different models, tasks,
and seeds. Furthermore, while the use of the heuristics involves the two hyperparameters (i.e., damp
and the acceptable range), we empirically find that these need not be tuned for different tasks and
models. In all of our experiments, we fixed the two hyperparameter values as we mentioned here.

8

Figure 6: Amount of accuracy degradation from the baseline when pruning BERTBASE using our
method and the prior structured pruning methods with different relative FLOPs. Note that our method
does not require retraining, whereas all the other methods involve significant retraining overheads as
described in Table 2.

5 Evaluation
5.1 Experimental Setup

Our framework is implemented on top of PyTorch [57] and the HuggingFace Transformers [86]
library. We evaluate the effectiveness of our approach using BERTBASE [12] and DistilBERT [63] on
GLUE [78] and SQuAD [60, 61] benchmarks. We use 2K examples from the training sets for pruning,
and we evaluate the resulting models on the development sets. All of the results are averaged over the
runs with 10 different seeds. More details on the experimental setup can be found in Section A.5.

5.2 Performance Evaluation

FLOPs. Figure 5 shows the accuracy of BERTBASE and DistilBERT with different FLOPs constraints
on GLUE and SQuAD datasets. As can be seen in the plots, with only 1% of accuracy drop,
BERTBASE achieves 60–70% of the original FLOPs for all tasks. DistilBERT also shows a similar
pattern and achieves up to 50% FLOPs reduction (in STS-B and MRPC) even though it is already a
compressed architecture. More results using larger sample datasets are provided in Section A.6.

Latency. We further measure the latency on real hardware by pruning BERTBASE with latency
constraints and deploying the resulting models on an NVIDIA V100 GPU. Table 1 lists the latency
speedup with maximum accuracy drop of 1% for GLUE and SQuAD datasets. With batch size of
256, we achieve speedup of 1.47⇥ on average and up to 1.56⇥.

5.3 Comparison with the Prior Methods

FLOPs and Accuracy Comparison. Here, we compare our method with the prior structured
pruning methods for Transformers including Flop [83], SLIP [44], Sajjad et al. [62], DynaBERT [25],
EBERT [49], Block Movement Pruning (BMP) [38], and CoFi [88] by the FLOPs-accuracy trade-
off of BERTBASE on GLUE tasks. We use the results without knowledge distillation and data
augmentation reported in each paper. Since the baseline accuracy differs slightly from paper to paper,
we compare the amount of the accuracy drop from the baseline instead of the absolute accuracy. The
results are plotted as Figure 6. We include the comparison details and full table in Section A.7.

Interestingly, our method exhibits comparable or better results than the prior methods without
any model retraining and with substantially lower pruning costs. This empirically demonstrates
that retraining and a complex pruning pipeline are not necessary for moderate level of pruning of
Transformers. For high sparsity, we find that our framework with retraining works comparably to or
better than the prior methods at the same pruning cost (See Section A.8).

Retraining Cost. We select DynaBERT [25], EBERT [49], BMP [38], and CoFi [88] that achieve
comparably good accuracy in Figure 6, and we systematically analyze their end-to-end retraining
costs on MNLI dataset. As shown in Table 2, these methods require 5�33 hours of retraining.
On the other hand, our method finishes in less than a minute, which is 2�3 orders of magnitude
faster. We also highlight that this training latency analysis only accounts for a single hyperparameter,
and the entire cost should be multiplied by the size of the hyperparameter space. While the prior
methods rely on a considerable number of hyperparameters, ours introduce only two hyperparameters
(in Section 4.3) which we fix for all experiments. See Section A.9 for more details.

9

Table 2: Pruning cost comparison between the
prior structured pruning methods and ours. We
compare the number of training epochs and the
end-to-end (E2E) time required for pruning.

Epochs E2E time (hr)

DynaBERT [25] 4 12
EBERT [49] 6 5
BMP [38] 20 17
CoFi [88] 40 33

Ours 0 0.01 Figure 7: Retraining-free accuracy without (dotted)
and with (solid) mask tuning.

Table 3: Ablation of our mask search, rearrangement, and tuning methods, described in Section 4.
We use BERTBASE as the baseline model, and we prune it with a 60% FLOPs constraint.

MNLI QQP QNLI SST-2 STS-B MRPC SQuAD1.1 SQuAD2.0 Avg. Diff

Baseline 84.53 91.00 91.41 93.57 88.90 86.27 88.48 76.82

Mask Search 81.21 89.99 88.38 92.13 87.10 83.14 82.66 71.12
+ Mask Rearrangement 81.81 90.08 88.77 92.09 87.68 83.23 84.47 72.38 + 0.60
+ Mask Tuning 82.51 90.35 90.06 92.49 88.00 85.27 86.72 75.26 + 1.27

5.4 Discussion

Ablation Studies. Table 3 lists an ablation of the mask rearrangement (Section 4.2) and tuning
(Section 4.3) stages for pruned BERTBASE with 60% of FLOPs. We find that both stages help recover
the baseline accuracy, and that mask tuning is in particular critical, recovering up to 2.88% accuracy.

To further investigate the importance of the mask search and rearrangement, we compare the
retraining-free performance of the binary masks obtained by our method and other pruning cri-
teria: weight magnitude and the gradient-based method used in DynaBERT. We uniformly pruned the
layers using the two criteria with different width multipliers. Figure 7 shows that the two methods
significantly degrade the accuracy under the low sparsity regimes. Even with mask tuning, the
accuracy is not fully recovered. The results demonstrate that our mask search and re-arrangement are
necessary to get optimal binary masks, and that mask tuning is only effective when the binary mask
preserves high accuracy. More ablation studies can be found in Section A.11 and Section A.12.

Time Breakdown. We break down our pruning pipeline into 4 parts—gradient computation, mask
search, rearrangement, and tuning—and we measure the latency for each stage as Table 5 (Sec-
tion A.10). For GLUE and SQuAD tasks, our framework finishes in 39 and 135 seconds on average.

6 Conclusion
In this work, we have proposed a novel post-training pruning framework for Transformers that does
not require model retraining. The core of our framework is the three-stage decomposition of the
pruning process. It uses a fast Fisher-based mask search algorithm to decide which heads/filters to
prune, rearranges the pruned heads/filters, and tunes the mask variables to recover the output signal
for each layer. We empirically evaluate our framework using BERTBASE and DistilBERT, where
our pruning method achieves up to 50% FLOPs reduction within only 1% accuracy degradation on
GLUE and SQuAD datasets. This results in up to 1.56⇥ latency speedup on an NVIDIA V100 GPU.
Importantly, our end-to-end pruning pipeline only needs 39 and 135 seconds for GLUE and SQuAD,
which is 2�3 orders of magnitude faster than the prior methods.

Acknowledgments and Disclosure of Funding
The authors would like to thank Suhong Moon who helped with brainstorming. We also acknowledge
gracious support from Google Cloud, Google TRC team, and specifically Jonathan Caton, Prof.
David Patterson, and Jing Li. Prof. Keutzer’s lab is sponsored by Samsung, Intel corporation, Intel
VLAB team, Intel One-API center of excellence, as well as funding through BDD and BAIR. Woosuk
Kwon and Sehoon Kim acknowledge the support from Korea Foundation for Advanced Studies. Amir
Gholami was supported through funding from Samsung SAIT. Michael W. Mahoney would also like
to acknowledge the UC Berkeley CLTC, ARO, NSF, and ONR. Our conclusions do not necessarily
reflect the position or the policy of our sponsors, and no official endorsement should be inferred.

10

References
[1] Yonathan Aflalo, Asaf Noy, Ming Lin, Itamar Friedman, and Lihi Zelnik. Knapsack pruning with inner

distillation. arXiv preprint arXiv:2002.08258, 2020.

[2] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for
self-supervised learning of speech representations. arXiv preprint arXiv:2006.11477, 2020.

[3] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-training 4-bit quantization of convolution
networks for rapid-deployment. arXiv preprint arXiv:1810.05723, 2018.

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[5] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

[6] Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding, Hongbo Deng, Jun Huang,
Wei Lin, and Jingren Zhou. Adabert: Task-adaptive bert compression with differentiable neural architecture
search. arXiv preprint arXiv:2001.04246, 2020.

[7] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training for full stack
speech processing. arXiv preprint arXiv:2110.13900, 2021.

[8] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity in
vision transformers: An end-to-end exploration. Advances in Neural Information Processing Systems,
34:19974–19988, 2021.

[9] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. The lottery ticket hypothesis for pre-trained BERT networks. arXiv preprint arXiv:2007.12223,
2020.

[10] Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, and Jingjing Liu. Earlybert:
Efficient bert training via early-bird lottery tickets. arXiv preprint arXiv:2101.00063, 2020.

[11] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment challenge.
In Machine Learning Challenges Workshop, pages 177–190. Springer, 2005.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[13] William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[15] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with structured
dropout. arXiv preprint arXiv:1909.11556, 2019.

[16] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[17] Elias Frantar and Dan Alistarh. Spdy: Accurate pruning with speedup guarantees. arXiv preprint
arXiv:2201.13096, 2022.

[18] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[19] Google. Tensorflow Lite: https://www.tensorflow.org/lite, 2017.

[20] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang, Xiaoying Jia, Xipeng
Li, Minyi Guo, and Yuhao Zhu. Accelerating sparse dnn models without hardware-support via tile-wise
sparsity. In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–15. IEEE, 2020.

11

[21] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong Park, Yoonho Song, Jung-Hun Park,
Sanghee Lee, Kyoung Park, Jae W Lee, et al. Aˆ 3: Accelerating attention mechanisms in neural networks
with approximation. In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 328–341. IEEE, 2020.

[22] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun Jung, and Jae W Lee. Elsa:
Hardware-software co-design for efficient, lightweight self-attention mechanism in neural networks. In
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pages 692–705.
IEEE, 2021.

[23] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE international conference on computer vision, pages 1389–1397, 2017.

[24] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

[25] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic bert with
adaptive width and depth. arXiv preprint arXiv:2004.04037, 2020.

[26] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and
Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked prediction of
hidden units. arXiv preprint arXiv:2106.07447, 2021.

[27] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Improving post training neural
quantization: Layer-wise calibration and integer programming. arXiv preprint arXiv:2006.10518, 2020.

[28] Forrest N Iandola, Albert E Shaw, Ravi Krishna, and Kurt W Keutzer. Squeezebert: What can computer
vision teach nlp about efficient neural networks? arXiv preprint arXiv:2006.11316, 2020.

[29] Intel. OpenVINO: https://docs.openvino.ai/latest/index.html, 2021.

[30] Shankar Iyer, Nikhil Dandekar, and Kornl Csernai. First quora dataset release: Question pairs.(2017). URL
https://data. quora. com/First-Quora-Dataset-Release-Question-Pairs, 2017.

[31] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351, 2019.

[32] Ashish Khetan and Zohar Karnin. schubert: Optimizing elements of bert. arXiv preprint arXiv:2005.06628,
2020.

[33] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert: Integer-only
bert quantization. arXiv preprint arXiv:2101.01321, 2021.

[34] Woojeong Kim, Suhyun Kim, Mincheol Park, and Geonseok Jeon. Neuron merging: Compensating for
pruned neurons. arXiv preprint arXiv:2010.13160, 2020.

[35] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In International
Conference on Learning Representations, 2019.

[36] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for large language
models. arXiv preprint arXiv:2203.07259, 2022.

[37] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-Gon Chun. Nimble: Lightweight and parallel gpu
task scheduling for deep learning. arXiv preprint arXiv:2012.02732, 2020.

[38] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster transformers.
arXiv preprint arXiv:2109.04838, 2021.

[39] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Al-
bert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942,
2019.

[40] Ivan Lazarevich, Alexander Kozlov, and Nikita Malinin. Post-training deep neural network pruning via
layer-wise calibration. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 798–805, 2021.

[41] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural information
processing systems, pages 598–605, 1990.

12

[42] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Thirteenth
International Conference on the Principles of Knowledge Representation and Reasoning. Citeseer, 2012.

[43] Bingbing Li, Zhenglun Kong, Tianyun Zhang, Ji Li, Zhengang Li, Hang Liu, and Caiwen Ding. Efficient
transformer-based large scale language representations using hardware-friendly block structured pruning.
arXiv preprint arXiv:2009.08065, 2020.

[44] Zi Lin, Jeremiah Zhe Liu, Zi Yang, Nan Hua, and Dan Roth. Pruning redundant mappings in transformer
models via spectral-normalized identity prior. arXiv preprint arXiv:2010.01791, 2020.

[45] Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin Chen,
Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical network compression.
In International Conference on Machine Learning, pages 7021–7032. PMLR, 2021.

[46] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[47] Yuanxin Liu, Zheng Lin, and Fengcheng Yuan. Rosita: Refined bert compression with integrated techniques.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 8715–8722, 2021.

[48] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030,
2021.

[49] Zejian Liu, Fanrong Li, Gang Li, and Jian Cheng. Ebert: Efficient bert inference with dynamic structured
pruning. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4814–
4823, 2021.

[50] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang,
Lintao Zhang, and Lidong Zhou. Rammer: Enabling holistic deep learning compiler optimizations with
rtasks. In 14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20),
pages 881–897, 2020.

[51] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? arXiv preprint
arXiv:1905.10650, 2019.

[52] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11264–11272, 2019.

[53] Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan Feldman. Data-independent
neural pruning via coresets. arXiv preprint arXiv:1907.04018, 2019.

[54] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine Learning,
pages 7197–7206. PMLR, 2020.

[55] ROYUD Nishino and Shohei Hido Crissman Loomis. Cupy: A numpy-compatible library for nvidia gpu
calculations. 31st confernce on neural information processing systems, 151, 2017.

[56] NVIDIA. TensorRT: https://developer.nvidia.com/tensorrt, 2018.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32:8026–8037, 2019.

[58] Sai Prasanna, Anna Rogers, and Anna Rumshisky. When BERT plays the lottery, all tickets are winning.
arXiv preprint arXiv:2005.00561, 2020.

[59] Valentin Radu, Kuba Kaszyk, Yuan Wen, Jack Turner, José Cano, Elliot J Crowley, Björn Franke, Amos
Storkey, and Michael O’Boyle. Performance aware convolutional neural network channel pruning for
embedded gpus. In 2019 IEEE International Symposium on Workload Characterization (IISWC), pages
24–34. IEEE, 2019.

[60] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for
squad. arXiv preprint arXiv:1806.03822, 2018.

13

[61] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[62] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. arXiv preprint arXiv:2004.03844, 2020.

[63] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[64] Victor Sanh, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive sparsity by fine-tuning.
arXiv preprint arXiv:2005.07683, 2020.

[65] Maying Shen, Hongxu Yin, Pavlo Molchanov, Lei Mao, Jianna Liu, and Jose M Alvarez. Halp: Hardware-
aware latency pruning. arXiv preprint arXiv:2110.10811, 2021.

[66] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 8815–8821, 2020.

[67] David So, Quoc Le, and Chen Liang. The evolved transformer. In International Conference on Machine
Learning, pages 5877–5886. PMLR, 2019.

[68] David R So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Primer: Searching
for efficient transformers for language modeling. arXiv preprint arXiv:2109.08668, 2021.

[69] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pages
1631–1642, 2013.

[70] Suraj Srinivas and R Venkatesh Babu. Data-free parameter pruning for deep neural networks. arXiv
preprint arXiv:1507.06149, 2015.

[71] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model compression.
arXiv preprint arXiv:1908.09355, 2019.

[72] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert: a
compact task-agnostic bert for resource-limited devices. arXiv preprint arXiv:2004.02984, 2020.

[73] Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang, Marco Donato, Victor Sanh,
Paul Whatmough, Alexander M Rush, David Brooks, et al. Edgebert: Sentence-level energy optimiza-
tions for latency-aware multi-task nlp inference. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 830–844, 2021.

[74] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with dense
networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

[75] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International Conference on
Machine Learning, pages 10347–10357. PMLR, 2021.

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[77] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint arXiv:1905.09418,
2019.

[78] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[79] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat:
Hardware-aware transformers for efficient natural language processing. arXiv preprint arXiv:2005.14187,
2020.

[80] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with cas-
cade token and head pruning. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 97–110. IEEE, 2021.

14

[81] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020.

[82] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-attention
distillation for task-agnostic compression of pre-trained transformers. arXiv preprint arXiv:2002.10957,
2020.

[83] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv
preprint arXiv:1910.04732, 2019.

[84] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

[85] Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

[86] Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, Anthony Moi, Pierric
Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45, 2020.

[87] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with long-short range
attention. arXiv preprint arXiv:2004.11886, 2020.

[88] Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate models.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1513–1528, 2022.

[89] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 2246–2251, 2020.

[90] Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. Nas-bert: Task-agnostic
and adaptive-size bert compression with neural architecture search. arXiv preprint arXiv:2105.14444,
2021.

[91] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet:
Generalized autoregressive pretraining for language understanding. Advances in neural information
processing systems, 32, 2019.

[92] Zhewei Yao, Linjian Ma, Sheng Shen, Kurt Keutzer, and Michael W Mahoney. Mlpruning: A multilevel
structured pruning framework for transformer-based models. arXiv preprint arXiv:2105.14636, 2021.

[93] Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Autotinybert: Automatic
hyper-parameter optimization for efficient pre-trained language models. arXiv preprint arXiv:2107.13686,
2021.

[94] Edouard Yvinec, Arnaud Dapogny, Matthieu Cord, and Kevin Bailly. Red: Looking for redundancies for
data-freestructured compression of deep neural networks. Advances in Neural Information Processing
Systems, 34:20863–20873, 2021.

[95] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. Gobo: Quantizing attention-
based nlp models for low latency and energy efficient inference. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 811–824. IEEE, 2020.

[96] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. arXiv
preprint arXiv:1910.06188, 2019.

[97] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. Proceedings of Machine Learning Research,
2019.

[98] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience: Fast
and robust inference with early exit. Advances in Neural Information Processing Systems, 33:18330–18341,
2020.

15

	Introduction
	Related Work
	Overview
	Background
	Framework Overview

	Methodology
	Fisher-based Mask Search
	Fisher-based Mask Rearrangement
	Mask Tuning

	Evaluation
	Experimental Setup
	Performance Evaluation
	Comparison with the Prior Methods
	Discussion

	Conclusion
	Appendix
	Proof of Equation 9
	Latency-aware Search Algorithm
	Derivation of Equation 11
	Formulating Equation 12 as a Linear Least Squares Problem
	Experimental Details
	Experimental Setup
	Datasets

	Impact of Sample Dataset Size
	Details for the Comparison with the Prior Methods
	Performance at high sparsity
	Retraining Costs
	Pruning Time Breakdown
	Efficacy of the Fisher-based Importance Metric
	Efficacy of Mask Search and Mask Re-arrangement
	Societal Impacts

